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Abstract

Fluoro-lactonization of 4-alkenoic acid derivatives containing an aryl substituent at the 4- or 5-position with N-fluoropentachloropyridinium
triflate proceeds smoothly in a regioselective manner with little or no diastereoselectivity. These reactions possibly involve aryl-stabilized a-
fluorocarbocation intermediates formed via single electron transfer from the pyridinium salt to the olefin as the first step. © 1997 Elsevier

Science S.A. All rights reserved.
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1. Introduction

The halo-lactonization reaction, in particular iodo- or
bromo-lactonization, is one of the most useful reactions
which can introduce functional groups to alkenes [1,2]. The
substrate structure, nature of the substituent in the substrate,
electrophilic halogenating reagent employed and reaction
conditions, such as kinetic or thermodynamic control,
strongly influence both the regiochemistry and diastereose-
lectivity. The high stereospecificity in these reactions is one
of the characteristic features: possibly, the reaction involves
the formation of a bridged halonium intermediate, followed
by the intramolecular attack of carboxylate by trans-addition.
Contrary to the well-documented iodo- or bromo-lactoniza-
tion, there have been no attempts to study the fluoro-
lactonization reaction, in spite of the importance of organic
fluorine compounds in the fields of medicinal and materials
science [3]; this is probably due to the lack of availability of
suitable electrophilic fluorinating reagents as well as proce-
dures for their safe and convenient use. Several electrophilic
fluorinating reagents having an N-F structure have been
developed and some of these are now commercially available
{4~10]. In this paper, we report the fluoro-lactonization reac-
tion of 4-alkenoic acids using N-fluoropyridinium triflates as
electrophilic fluorinating reagents.
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2. Results and discussion

Initially, fluoro-lactonization of 4-phenyl-4-pentenoic acid
(1a) was conducted using a series of N-fluoropyridinium
triflates (A—C) [4,5] (Scheme 1). The results are summa-
rized in Table 1. As reported in Ref. [4,5], the reactivity of
the N-fluoropyridinium salt increases as the electron density
of the positive nitrogen site decreases. With the mostelectron-
poor pentachloro derivative A, the reaction proceeds at room
temperature in CH,CN to give fluorolactone 2a (runs 1-3).
The salts with higher electron density show lower efficacy;
with the 2,6-dichloro derivative B, 2a is formed in good yield
at 80 °C (run 4), but the pyridinium salt C does not lead to
the fluoro-lactonization of 1la. It should be noted that the
addition of a base is needed in this reaction; in the absence
of a base, competitive formation of the proton-mediated lac-
tonization product 3a occurs (runs 2 and 3 vs. run 1). With
these results in hand, we examined further fluoro-lactoniza-
tion reactions using the pentachloro derivative A as fluori-
nating reagent and NaHCO; as a base.
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Table 1
Reaction of 1a with N-F-Py salt*

Run  Reagent  Additive Conditions 2a 3a
(%)° (%)°

1 A Room 45 45
temperature
(rt), 1h

2 A NaHCO, i, 1h 69

3 A 2,6- i, 1 h 55 8

Lutidine
4 B NaHCO, 80°C,2h 74
5 C NaHCO, 80 °C, 0.5 h*

"Molar ratio: 1a (1 eq.), N-F-Py salt (1.2 eq.), additive (1.5 eq.).
PIsolated yield.
“Decomposition of C.

WO’VO’VX"
M@V‘O

“JIV\!IO——*

NaHCO3
\/K_LU hf)ﬂ) J:OCHS
CHiCN  12% 4% 73%
CHxCly 42% 78 % —_
Scheme 2.

Ph A, NaHCO, Ph
R‘MOH i Bt~/ °

CH4CN 0
R? (o]
1b 2
Z1b R'<Et R%H 72% 211
Eb R'sH R%=Et  51% 1:24
R z OH A, NaHOO; Fu
m CHaON CH 0 +P"‘; lo
1c cis-2¢ trans-2c
Z1c R'«CHy R2aPh  53% 1:25
E4c R'sPh R2=CH; 20% 1:22
Scheme 3.

Only limited fluoro-lactonization is achieved with alkyl-
substituted 4-pentenoic acids. For example, fluoro-lactonized
products cannot be obtained with the substrates 1d-1h {5].
In the case of 1i, which should form a tertiary carbocation
intermediate by fluorination of the olefinic part with the salt
A or by direct protonation of the olefin, fluorolactone 2i,
fluorolactam 4i, derived from acetonitrile (solvent) incor-
poration, and non-fluorinated lactone 3i are obtained under
the conditions mentioned above. A similar reactionin CH,Cl,
gives 2i in poor yield together with 3i as the major product
(Scheme 2). In both cases, the proton-mediated lactonized

compound 3i is the major product even in the presence of
NaHCO;. These results indicate that reagent A has limited
ability to transfer electrons to these alkyl-substituted double
bonds [5,7].

With 4-alkenoic acids containing a phenyl group on the
double bond, fluoro-lactonization proceeds smoothly in a
regioselective manner, namely by the 5-exo mode in the case
of a phenyl group at the 4-position giving rise to the y-lactone
and by a 6-endo mode in the case of a phenyl group at the 5-
position givingrise to the 8-lactone (Scheme 3). With regard
to the diastereoselectivity, we examined the reaction using
the geometrically pure substrates (E or Z isomer of 1b and
1c). Under the reaction conditions mentioned above (1.2 eq.
of A, 1.5 eq. of NaHCO,, CH;CN, room temperature), Z-1b
gives the fluoro-y-lactone 2b in 72% yield in adiastereomeric
ratio of 2.1 : 1, while E-1b gives 2b in 51% yield in a dias-
tereomeric ratio of 1 : 2.4. The major isomer derived from Z-
1b is the same as the minor isomer derived from E-1b. There-
fore some stereospecificity is observed in the case of 1b. In
the case of 1c, both Z- and E-1c¢ give the fluoro-8-lactone 2¢
in a similar diastereomeric ratio: cis-2c¢ : trans-2¢=1:2.5
from Z-1c and 1:2.2 from E-1c. The structure of 2¢ was
determined by 'H and 'F nuclear magnetic resonance
(NMR) spectra and nuclear Overhauser effect (NOE) exper-
iments to reveal that both cis- and trans-2¢ contain prefer-
entially axial fluorine.

It is known that iodo-lactonization proceeds in a highly
stereospecific manner through trans-addition of iodine and
carboxylic oxygen across the double bond [ 1]. For example,
we confirmed that the iodo-lactonization of Z-1b under
kinetic control (N-iodosuccinimide in CHCl; or I—KI,
NaHCO; in tetrahydrofuran—-H,0) gave the corresponding
iodo-vy-lactone as a single diastereomer, and nearly the same
diastereoselectivity was realized under thermodynamic con-
trol (I, in CH;CN). From these results, the fluoro-lactoni-
zation reactions examined here probably proceed in a
stepwise process involving the generation of a carbocation
followed by nucleophilic ring closure.

The electrophilic fluorination of olefins in the presence of
weak nucleophiles has been investigated with several fluori-
nating reagents, e.g. XeF, [11], CsSO,F [12], CF;COOF
[13], N-fluoropyridinium salt A [5], N-fluorobis-
[ (perfluoroalkyl)sulphonyl]imide [7] and (1-(chlorome-
thyl)—4—fluoro—1,4—diazabicyclo{ 2.2.2 Joctane
bis(tetrafluoroborate) (F-TEDA-BF,) [9,10]. Like our
fluoro-lactonization, phenyl-substituted olefins react with
these reagents to give the fluorinated product in reasonable
yield and no stereospecificity is observed with 1,2-disubsti-
tuted olefins. For the reaction mechanism, single electron
transfer (SET) from the fluorinating reagent to the double
bond, followed by F radical capture to form the carbocation
intermediate, has been proposed [5,7]. Thus a lower oxida-
tion potential of the double bond and the stabilization of the
cationic intermediate by the substituent should be crucial
factors in obtaining the fluorinated product. In our fluoro-
lactonization (intramolecular reaction), the partial partici-
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pation of the carboxyl group in the intermediate carbon cation
is possibly considerable in the case of 5-exo ring closure (1b
to 2b in Scheme 3), since opposite diastereoselectivity was
realized between the Z and E isomers of 1b. Such participa-
tion may be negligible in the case of the 6-endo reaction (1¢
to 2¢). The formation of a non-fluorinated lactone, such as
3a, may be derived from a competitive proton-mediated reac-
tion. This is summarized in Scheme 4. A similar tendency
was also found in the etherification reaction of 5 with the
fluoropyridinium salt A (Scheme 5).

In conclusion, the fluoro-lactonization of 4-alkenoic acids
and the fluoro-etherification of 4-alkenols with N-fluoropen-
tachloropyridinium triflate proceed smoothly in a regioselec-
tive manner when the substrates contain an aryl substituent
on the double bond. Some stereospecificity is observed in the
case of 5-exo ring closure, possibly due to the participation
of the oxygen atom in the aryl-stabilized -cationic
intermediate.

3. Experimental details

3.1. General

IR spectra were recorded on a Hitachi 270-30 IR spectro-
photometer. NMR spectra were measured in CDCl;. 'H and
13C NMR spectra were recorded on a Brucker AM400 or a
Varian Gemini 300 spectrometer and chemical shifts were
expressed in & (ppm) downfield from CHCIl; (7.26 ppm)
and CDCl; (77.0 ppm) respectively. '°F NMR spectra were
taken on a Brucker AM400 spectrometer using benzotrifluor-
ide (8= —63 ppm relative to CCI;F) as a standard. Mass
spectra (MS) were recorded by electron impact. Column
chromatography was performed on silica gel (Wakogel C-
200, 75~150 pwm). Medium-pressure liquid chromatography

(MPLC) was performed on a 30 cm X4 cm i.d. prepacked
column (silica gel, SO wm) with a UV detector.

3.2. General procedure of fluoro-lactonization reaction

To a mixture of N-fluoropyridinium salt (1.2 mmol) and
NaHCO; (1.5 mmol) in CH;CN was added unsaturated car-
boxylic acid (1 mmol) under an argon atmosphere. After
stirring at room temperature for 1 h, 1 N Na,S,0; solution
(5 ml) and AcOEt (20 ml) were added to the reaction mix-
ture. The organic layer was separated and the aqueous layer
was extracted with AcOEt (10 ml). The combined organic
layer was washed with brine, dried over MgSO, and evapo-
rated. The residue was purified by silica gel column chro-
matography (hexane—AcOEt), and further purification was
performed by MPLC, if needed, to give the product(s).

3.2.1. 5-Fluoromethyl-5-phenyl-tetrahydro-2-furanone (2a)

Colourless oil. IR (CHCl;) (cm™'): 1782, 1450, 1232.
'H NMR &: 2.39-2.64 (2H, m), 2.71-2.93 (2H, m), 4.47
(1H,dd, Jyr=47.5Hz, J;3; = 10.4 Hz, CH,F), 4.54 (1H, dd,
Jur=41.5 Hz, Jiy;=10.4 Hz, CH,F), 7.31-7.46 (5H, m,
Ph). '*C NMR §&: 28.9, 30.4, 87.1 (d, Joe=13.4 Hz), 87.4
(d, Jeg =138 Hz), 125.1, 128.7, 128.9, 138.4 (d, Jcg=4.3
Hz),175.8."’FNMR &: — 158.5 (t,Jur=47.5Hz). MSm/z.
194 (M*), 161 (M* ~CH,F), 133, 115, 105, 91, 77. Anal-
ysis: calculated for C,;H,,FO,: C, 68.03%; H, 5.71%; found:
C, 67.80%; H, 5.76%.

3.2.2. 5-Fluoromethyl-5-(2' -phenylethyl)-tetrahydro-2-fur-
anone (2i)

Colourless oil. IR (CHCl;) (ecm™Y): 1776, 1604, 1494,
1454. '"H NMR &: 1.90-2.20 (3H, m), 2.28-2.41 (1H, m),
2.52-2.82 (4H, m), 4.39 (1H, dd, Juz=47.0 Hz, Jy3=9.9
Hz),4.51 (1H, dd, Jyr=47.0 Hz, J;;; = 9.9 Hz), 7.14-7.34
(5H, m). *C NMR §&: 27.8 (d, Jop=4.2 Hz), 29.0 (d,
Jer=2.3 Hz), 293, 37.6 (d, Jeg=4.2 Hz), 85.8 (d,
Jer=17.4Hz), 86.3 (d, Jocr=178 Hz), 126.3, 128.2, 128.6,
140.5, 176.2. >F NMR &: —123.4 (d, J;z=47.0 Hz). MS
m/z:222 (M*), 202 (M* —HF), 189 (M* —CH,F), 161,
142, 129, 117, 91. Analysis: calculated for C,3H,sFO,: C,
70.25%; H, 6.80%: found: C, 70.11%; H, 6.70%.

3.2.3. I-Acetyl-5-fluoromethyl-5-(2'-phenylethyl)-pyrroli-
din-2-one (4i)

Colourless oil. IR (CHCl,) (cm™!): 1744, 1700. '"HNMR
5. 1.73-1.84 (1H, m), 2.02-2.28 (2H, m), 2.53 (3H, s,
acetyl), 2.38-2.78 (5H, m), 4.33 (1H, dd, Jyr=46 Hz,
Ju=9.3 Hz, CHF), 5.00 (1H, dd, Jyz=48 Hz, J;u=9.3
Hz, CHF), 7.11-7.32 (5H, m, Ph). *C NMR &: 26.1 (d,
Jee=3.8 Hz), 26.7,29.3,31.0, 34.8 (d, Jcg=4.4 Hz), 67.5
(d, Jeg=17.1 Hz), 859 (d, Jcp=174 Hz), 126.2, 128.2,
128.5, 140.5, 172.5, 176.7. ""FNMR &: —125.2 (t, Jp; =48
Hz). MS m/z: 263 (M™*), 221, 188, 117, 91, 77. Analysis:
calculated for C,sH,sFNO: C, 68.42%; H, 6.89%; N, 5.32%;
found: C, 68.30%; H, 6.89%; N, 5.32%.
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3.2.4. 5-(1'-Fluoropropyl)-5-phenyl-tetrahydro-2-furanone
(2b)

The reaction of Z-1b with fluoropyridiniumsalt A in accord
with the general procedure provided a diastereomeric mixture
of 2b, which was further separated by MPLC (hexane—
AcOEt=5: 1) to give less polar 2b (2b-LP) and more polar
2b (2b-MP) in a ratio of 2.1 : 1. 2b-LP: colourless oil. IR
(CHCIl;) (cm™'): 1768, 1518, 1496, 1228. "H NMR &: 0.89
(3H,t,J=7.4Hz), 1.28 (1H, dddd, Jy = 41 Hz, Jy,; = 14.9,
7.5,2.3Hz),1.70-1.86 (1H,m), 2.36 (1H, dddd, Jyy = 12.3,
10.0,7.5Hz, Jyz=2.1 Hz), 2.49 (1H, dddd, J,;5u = 17.5, 10.0,
4.9 Hz, J,;z=2.7 Hz), 2.77 (1H, dddd, Jy = 17.5, 10.0, 7.5
Hz, Juyr=2.3 Hz), 2.93 (1H, dddd, J;; = 12.3, 10.0, 4.9 Hz,
Jur=1.1 Hz), 4.55 (1H, ddd, Jyr =47 Hz, Jyy=104, 2.3
Hz, CHF), 7.30-7.45 (5H, m, Ph). '*C NMR &: 9.93 (d,
Jcr=3.7 Hz), 21.8 (d, Jog=22.3 Hz), 28.6 (d, Jcg=3.9
Hz), 32.6 (d, Jce,=3.4 Hz), 88.8 (d, Jcg=19.5 Hz), 99.7
(d, Jep=182.1 Hz), 124.6, 128.1, 128.8, 140.4, 176.3. °F
NMR &: —131.2 (ddd, Jyr=47, 41, 13 Hz). MS m/z: 222
(M™), 161, 133, 115, 105, 91, 77. Analysis: calculated for
C,5H;sFO,: C, 70.25%; H, 6.80%; found: C, 69.94%; H,
6.83%. 2b-MP: colourless oil. IR (neat) (cm™'): 1781,
1496, 1385. '"H NMR &: 0.93 (3H, t,J=7.4 Hz), 1.24-1.42
(1H, m), 1.42 (1H, ddqd, Jyr=48 Hz, Jyu=14.6,7.4,2.8
Hz),2.43-2.60 (2H, m), 2.64-2.83 (2H, m), 4.50 (1H, ddd,
Jur=48 Hz, Jyy=10.0, 2.8 Hz, CHF), 7.30~7.45 (5H, m,
Ph). >*CNMR &:9.77 (d, Jcp=4.1 Hz), 23.2 (d, Jcg =20.7
Hz),28.4,29.9,88.6 (d,Jcp=22.5Hz),98.3 (d, Jcp=180.7
Hz), 125.9, 128.4, 138.6 (d, Jcp=2.3 Hz), 175.9. F NMR
8 —129.2 (ddd, Jyr=48,48,15.6 Hz) . MS m/z: 222 (M),
161, 133, 115, 105, 91, 77. Analysis: calculated for
C,3H,sFO,: C, 70.25%; H, 6.80%; found: C, 70.18%; H,
6.68%.

3.2.5. 5-Fluoro-6-methyl-6-phenyl-tetrahydro-2-pyrone
(2c)

A diastereomeric mixture of 2¢, obtained by reaction of Z-
1c with fluoropyridinium salt A in accord with the general
procedure, was separated by silica gel column chromatogra-
phy (hexane-AcOEt=S5 : 1, then AcOEt) to give trans-2c
and cis-2¢ in the order of elution. trans-2c: colourless oil. IR
(CHC1;) (cm™'): 1738, 1446, 1380, 1262. '"HNMR &: 1.77
(3H, d, J=2.4 Hz), 1.77 (1H, ddddd, J, =43 Hz,
Juy=14.9,11.4,7.8,2.1 Hz),2.03-2.12 (1H, m), 2.46 ( lH,
dddd, /=18.5, 7.8, 2.2, 0.8 Hz), 2.71 (1H, ddd, J=18.5,
11.4,79Hz),5.02 (1H, ddd, Jye =47 Hz, Jy;=4.1,2.1 Hz,
CHF), 7.25-743 (5H, m, Ph). '>)C NMR & 21.8 (d,
Jer=21.6 Hz), 23.9 (d, Jcg=3.9 Hz), 25.9 (d, Jeg=S5.7
Hz), 86.5 (d, Jcg=19.5 Hz), 89.0 (d, Jcp =182 Hz), 124.2,
128.1, 129.0, 142.0 (d, Jcg=5.1 Hz), 169.7. "°F NMR &:
—132.2 (ddd, Jur=47, 43, 5.7 Hz). MS m/z: 208 (M "),
180, 165, 121, 105, 77. Analysis: calculated for C,,H;;FO:
C, 69.22%; H, 6.29%; found: C, 69.13%; H, 6.33%. cis-2c:
colourless oil. IR (CHCl;) (cm™'): 1740, 1234, 1222. 'H
NMR &: 1.73 (3H,d,/=1.4 Hz),2.19-2.28 (1H, m), 2.19-
2.38 (1H, m), 2.62-2.83 (2H, m), 4.95 (1H, ddd, Jyz = 46.7

Hz, J,u=5.5, 3.0 Hz, CHF), 7.30-7.47 (5H, m, Ph). Bc
NMR 6:22.37 (d, Jcg=22Hz),24.5 (d,Jcg=5.7Hz),27.8
(d, Jc,=3.3Hz), 85.2 (d, Jcr =20 Hz), 89.0 (d, Jor= 180
Hz), 124.8, 127.8, 128.4, 140.4, 169.2. "’FNMR §: —126.1
(ddd, Jyur=47, 36, 5.5 Hz). MS m/z: 208 (M™), 180, 165,
121, 105, 77. Analysis: calculated for C,,H;5FO,: C, 69.22%;
H, 6.29%; found: C, 69.25%; H, 6.28%.

3.2.6. 2-Fluoromethyl-2-phenyl-tetrahydrofuran (6a)

Colourless oil. IR (CHCl;) (cm~1): 1216, 1068, 1030.
'H NMR §&: 1.79-1.95 (1H, m), 1.96-2.21 (2H, m), 2.35-
248 (1H,m),395 (1H,q,/=7.2Hz),4.08 (1H,q,J=7.2
Hz),4.40 (2H, d, J,;- =48 Hz), 7.23-7.48 (5H, m, Ph). 1*°C
NMR & 26.0, 339 (d, Jeg=3.0 Hz), 67.5, 855 (d,
Jer=17.8 Hz), 87.5 (d, Jcr= 181 Hz), 125.6, 127.3, 128.2,
142.6 (d, Jop=4.7 Hz). F NMR & —131.7 (t, Jyr=48
Hz). MS m/z: 161 (M™ —F), 147 (M™ —CH,F), 129, 117,
105, 91, 77. High resolution MS: C,(H;,;0 (M* —CH,F)
requires 147.0810. Found: 147.0788.

3.2.7. 2-Fluoromethyl-2-(2'-phenylethyl)-tetrahydrofuran
(6b)

Colourless oil. IR (CHCl;) (cm™'): 1220, 1202. 'THNMR
8:1.76-2.02 (6H, m), 2.70 (2H, t, J=8.7 Hz), 3.91 (2H,t,
J=59Hz),4.26 (1H,dd, Jus=47.7Hz, J;u=9.3Hz),4.31
(1H, dd, Jyz=47.7 Hz, Jy4=9.3 Hz), 7.15-7.36 (5H, m,
Ph). ">)C NMR §&: 26.3, 30.1, 31.9 (d, Jcr=3.0 Hz), 38.2,
68.7, 82.0 (d, Jog=15.0 Hz), 86.4 (d, Jcg=175.0 Hz),
125.8, 128.3, 128.4, 142.1. "F NMR & —1274 (4,
Jy=47.8 Hz). MS m/z: 208 (M™*), 175, 144, 129, 117,
103, 91.
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